[코딜리티] maxCounters
[Counting] maxCounters
문제
You are given N counters, initially set to 0, and you have two possible operations on them:
increase(X) − counter X is increased by 1, max counter − all counters are set to the maximum value of any counter. A non-empty array A of M integers is given. This array represents consecutive operations:
if A[K] = X, such that 1 ≤ X ≤ N, then operation K is increase(X), if A[K] = N + 1 then operation K is max counter. For example, given integer N = 5 and array A such that:
A[0] = 3
A[1] = 4
A[2] = 4
A[3] = 6
A[4] = 1
A[5] = 4
A[6] = 4 the values of the counters after each consecutive operation will be:
(0, 0, 1, 0, 0)
(0, 0, 1, 1, 0)
(0, 0, 1, 2, 0)
(2, 2, 2, 2, 2)
(3, 2, 2, 2, 2)
(3, 2, 2, 3, 2)
(3, 2, 2, 4, 2) The goal is to calculate the value of every counter after all operations.
Write a function:
function solution(N, A);
that, given an integer N and a non-empty array A consisting of M integers, returns a sequence of integers representing the values of the counters.
Result array should be returned as an array of integers.
For example, given:
A[0] = 3
A[1] = 4
A[2] = 4
A[3] = 6
A[4] = 1
A[5] = 4
A[6] = 4 the function should return [3, 2, 2, 4, 2], as explained above.
Write an efficient algorithm for the following assumptions:
N and M are integers within the range [1..100,000]; each element of array A is an integer within the range [1..N + 1].
첫번째 풀이
function solution(N, A) {
let result = new Array(N).fill(0);
let counter = 0;
for (let i = 0; i < A.length; i++) {
if (A[i] <= N) {
result[A[i]-1]++;
if (counter < result[A[i]-1]) {
counter = result[A[i]-1];
}
} else {
result = new Array(N).fill(counter);
}
}
return result;
}
correctness 는 모두 통과하지만 performance test case 5개 중 2개를 통과하지 못한다. (77%)
for 문 안에서 .fill
을 돌리니 O(N^2)
이 나온 것.
두번째 풀이
따라서 가장 큰 카운터를 저장 및 갱신하는 max
변수를 만들고,
for 문이 끝난 다음에 .map
으로 max
값을 할당해주었다.
Detected time complexity: O(N+M)
로 나오며 모든 test case 통과 (100%)
function solution(N, A) {
let result = new Array(N).fill(0);
let counter = 0;
let max = 0;
for (let i = 0; i < A.length; i++) {
if (A[i] <= N) {
if (result[A[i]-1] < max) {
result[A[i]-1] = max;
}
result[A[i]-1]++;
if (counter < result[A[i]-1]) {
counter = result[A[i]-1];
}
} else {
max = counter;
}
}
return result.map((el) => {
if (el < max) {
return max;
} else {
return el;
}
});
}